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Abstract
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paper we discuss an approach to overcome this assumption by adding extra variables
and extra constraints in the problem formulation. We apply it to least squares
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zero values for true class labels. However, when only a limited amount of labeled
data is available, an increased performance is observed for the proposed method on

some data sets.
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1 Introduction

This communication concerns the subject of semi-supervised learning. Within
the area of semi-supervised learning, or the related topic of transductive learn-
ing, the goal is to take unlabeled data points into account when making predic-
tions and estimating a classifier. For this purpose, certain assumptions have to
hold (Zhou, Bousquet, Lal, Weston, & Schélkopf, 2004; Chapelle, Schélkopf, &
Zien, 2006). First there is the smoothness assumption; cases that are close in
the input space, often tend to have similar class labels. The cluster assumption
means that points from the same cluster are likely to belong to the same class.
Low density separation supposes that the decision boundary should be in a
low density region. Finally, the manifold assumption indicates that data lie
on a low-dimensional manifold. Nowadays, semi-supervised learning is an ex-
tensively studied topic. This can be explained by the fact that unlabeled data
are available in larger amounts than fully labeled data as they are in general
easier to collect. An overview of the field can be found in (Zhu, 2005). Meth-
ods include expectation maximization algorithms (Nigam, McCallum, Thrun,
& Mitchell, 2000), transductive support vector machines (SVMs) (Vapnik, V.
N., 1998), self-training (Yarowsky, 1995), co-training (Blum & Mitchell, 1998)
and graph based approaches (Blum & Chawla, 2001; Chapelle, Weston, &
Scholkopf, 2003).

In this paper an assumption is addressed that is made in a number of studies,
solving the semi-supervised learning problem (Tsuda, Shin, & Schélkopf, 2005;
Belkin, Niyogi, & Sindhwani, 2006). These studies assume that unlabeled data
have a true class label to be equal to zero which is not further motivated. We

provide a solution to overcome this assumption. It is formulated here as an ex-



tension of a least squares support vector machine (LS-SVM) classifier (Suykens
& Vandewalle, 1999) by additional constraints. LS-SVM methodology, as dis-
cussed in (Suykens, Van Gestel, De Brabanter, De Moor, & Vandewalle, 2002),
enables to extend standard SVMs to a wider range of problems with primal-
dual formulations for kernel methods in supervised and unsupervised learning

and beyond.

This paper is organized as follows. First in Section 2 the approaches in (Tsuda
et al., 2005) and (Belkin et al., 2006) are reviewed and the problem is stated.
In Section 3, it is illustrated how to overcome the unrealistic assumption by
taking additional constraints in LS-SVM classifiers. In Section 4 the method

is tested on a number of artificial and real-life data sets.

2 Semi-supervised learning methods

In this Section two existing approaches to handle the semi-supervised learning
problem are reviewed. First the method by (Tsuda et al., 2005) is explained,
next, the approach by (Belkin et al., 2006) is briefly described. In order to be
consistent with the sequel, the notations from the approach by (Tsuda et al.,

2005) are slightly modified.

2.1 Tsuda et al.

Consider a data set {z;,y;}Y,, with z; € R? being the input vectors and
y; € {—1,4+1} the class labels. In a semi-supervised setting part of the y;
values are unknown, resulting into a number of unlabeled data points x;.

In (Tsuda et al., 2005) this problem is tackled by a graph-based method,



inspired by (Zhou et al., 2004). A weighted graph is assumed and the strength
of linkage is represented by an adjacency matrix V' with elements v;;. The
elements v;; are assumed to be nonnegative and equal to zero in case there is
no edge between node ¢ and node j. The first p data points are supposed to
be labeled, the last ¢ vectors remain unlabeled such that N = p+ ¢. The goal
of the approach in (Tsuda et al., 2005) is to make predictions g,11, ..., yn by
exploiting the structure of the graph. As such, nodes with a strong linkage (i.e.
a high v;; value) tend to originate from the same class. The following criterion

is proposed in (Tsuda et al., 2005)

min J1(9) Ii(@i—yi)zﬂL i\f: i +n i vii (9 — 9;)%, (1)

4 i=1 i=p+1 1,j=1
where § = [7; ... QN]T is the vector with class labels. Final class predictions
are obtained by thresholding the y; values. The first term in this minimization
problem is the standard error on the training data. The second term imposes
a reasonable range for the predictions of unlabeled data and the last term reg-

ularizes local smoothness where 1 denotes a positive regularization constant.

Next, the problem is reformulated as

mgin Ji(@) = (4 — y)T(?Q —y)+n 9" Ly, (2)

obtaining the solution

§=(+nL)"y, (3)

with L the graph Laplacian matrix (Chung, F. R. K., 1997) defined as L =



D —V where D = diag(dy, ... ,dy), d; = Z v and y = [y1 ... yp 0 ... O]T.
As such, in this approach it is explicitly assumed that the true labels for

unlabeled data are equal to 0 while they are in fact completely unknown.

2.2  Belkin et al.

The study in (Belkin et al., 2006) is closely related to (Tsuda et al., 2005)
and establishes a general framework for semi-supervised learning incorporat-
ing labeled and unlabeled data. Specifically, an extension to regularized least
squares is proposed. The Laplacian regularized least squares (RLS) method

minimizes

fm71{n J2(f) = Hf||K+7 Z ) +77fTLf (4)

where f belongs to a reproducing kernel Hilbert space Hg. The first term is a
regularization term to impose smoothness on the estimated function, K is the
kernel function and f= [f(x;) ... f(zn)]". The representer theorem is used to
obtain the solution with an expansion of kernel functions with coefficients «;

such that

Zal x,x;). (5)

Next, the following convex quadratic objective function is minimized

1

min Ja(a) = 75

1
(y— JKa) (y — JKa) + §ozTKoz +na' KLKa, (6)



resulting in the following solution (Belkin et al., 2006)

a=(y "+ JK+2y LK)y, (7)

where J = diag(1, ... ,1,0, ... ,0) with the first p elements equal to 1 and the

last ¢ equal to 0, y = [y1 ... ¥, O ... O]T and the coefficients a = [a ... aN]T.

Hence, in this methodology it is also assumed that the targets y; for unla-
beled data equal 0. In the following Section, it is shown how to overcome
this assumption and this is illustrated by incorporating it within an LS-SVM

formulation.

3 A semi-supervised LS-SVM formulation

In (Suykens & Vandewalle, 1999) least squares support vector machines clas-

sifiers were proposed as

1 1Y
min J3(w,e) = —w'w +v= "€, (8)
subject to
yZ(wTQO(xZ)_I_b) = 1_6i7 L= 1)"'7Na (9)

with e = [e; ... en]”, ¢ : R? — R% a mapping from the input space into a
high-dimensional (potentially infinite dimensional) feature space of dimension

dp, w a vector of the same dimension as ¢, v a positive regularization constant



and b a bias term. In this way, the standard SVM formulation is changed by
taking a least squares loss function with error variables e; and modifying the
inequality constraints into equality constraints. The value 1 in the equality
constraints is a target value instead of a threshold value. Therefore, the method
is related to kernel Fisher discriminant analysis (Suykens et al., 2002). This
formulation results in solving a set of linear equations instead of solving a
quadratic programming problem. The primal problem is expressed in terms of

the feature map, the dual problem in terms of the kernel function.

We now extend this method towards semi-supervised problems by the follow-

ing expression

‘ 1 1 1 X o
Jin Ji(w,e,9) = gw'w +75 3 el +0g5 3 vy~ 9% (10)
e i=1 ij=1

such that

0 = wlo(x;) +b, i=1,..,N,

Ji =viyi — e, v €{0,1}, i=1,..,N.

In contrast with the approaches in (Tsuda et al., 2005; Belkin et al., 2006),
this method does not assume a target value of 0 for unlabeled cases. In fact, no
assumptions are made about the y; values of the unlabeled data vectors. In our
approach the encoding of labels is fully handled by the use of the v; variables.
In case x; is a labeled data point, the v; value is set to 1, otherwise 0 is assigned.
This results in the standard squared loss function if a case is labeled. When

dealing with unlabeled data an extra regularization term applies as in the



graph-based learning method presented in (Tsuda et al., 2005). The g; values
are minimized, which is less restrictive than assuming zero values for the true

labels of the unlabeled data points.

Lemma 3.1 The dual solution to the semi-supervised learning problem (10)-

(11) is given by

YU+ K420y ' LK 1y | |« 2
= , (12)
1 o [b 0
with z = [y ... VNyN]T, Iy =1 .. 1]T, K the kernel matriz with K;; =
o(x:i)Tp(x;) = K(x4,2;), L the graph Laplacian matriz and
N
=> va(Kj — Kj), i,j =1,..N. (13)
—1

The resulting classifier is given by

= sign <Z o, K(x;,x) + b) (14)

Proof The Lagrangian for the problem (10) is

N

E(wvba er;OKaﬂ) = \74(w7€7g)+zai Yi ’UJ 90 xz _'_Zﬂz Yi Viyi+€i)7
1=1

(15)

with «; and 3; the Lagrange multipliers, o = [« ... aN]T and 5 = [ ... BN]T.

The conditions for optimality yield



g_i =0—w= Zf\il i (;)

oL __ N —

L =0—oe=—"6,i=1.,N

(16)
2L —0— g =wTp(e;)+b, i=1,...N
g—é =0—y=vy —¢€,i=1,.,N
% =0—a;+ 06+ 2772;-21 0;i; (9 —j), i =1,...,N.
Elimination of w and e gives
Eﬁil o =0
Yl age(ay) () +b=vy; +7 ' B, i =1, N (17)
Bi=— (ai + 20 3200 vy (9 — ?J])) ,i=1,.,N
which gives the result (12).
([

The linear system in (12) is closely related to (3) and (7). Compared to the
other formulations, the assumption that unlabeled cases x; have correspond-
ing y; equal to 0 is omitted. Furthermore, the difference with (3) is that a
kernel based approach applies in (12). Other than in (7), an extra regulariza-
tion term keeping predicted g; values small is added in (12). As a result, the
matrix J is excluded from the equation in (12). This observation also suggests

that when only a limited number of labeled data is available, the proposed



method might achieve an increased performance compared to Laplacian RLS
since more information is used. This is further empirically studied in the next
Section. Finally, an extra bias term b and an entry in the linear system that

forces the Lagrange multipliers «; to sum to 1 has been included.

4 Examples

In this Section both artificial and real-life data sets are used to illustrate the
proposed model. The method is compared with standard LS-SVM classifiers.
Also, the performance of semi-supervised LS-SVMs is compared with the one

of Laplacian RLS on various problems.

4.1 Artificial examples

In the first example the proposed method is illustrated on the two moons
benchmark classification problem, which is also considered in (Zhou et al.,
2004; Belkin et al., 2006). The data set is made available by the study in (Belkin
et al., 2006) and comprises 200 data points from which one case is labeled per
class (i.e. moon). In Figure 1 the data are plotted in the upper left panel.
Based on the labeled data point in each moon, the goal is to predict the class
value for the unlabeled points in the grid. For this first toy problem opti-
mal parameters are used, though these observations hold for a wider range of
parameter values. The standard LS-SVM classifier with radial basis function
kernel (RBF), depicted in the upper right panel of Figure 1, constructs a lin-
ear classifier which does not recognize the two moons. Next, all the unlabeled

data points are included in the analysis by solving the linear system proposed
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in (12) using an RBF kernel (y = 0.0001, n = 1, 0® = 0.2), producing the
lower left panel. Further, in the lower right panel, the same classifier is used
to predict the label of 200 new data points. It can be seen that the inclusion

of the term regularizing local smoothness improves classifier performance.

To verify the effect of the number of labeled data for standard LS-SVM classi-
fiers, semi-supervised LS-SVM classifiers and Laplacian RLS, two overlapping
Gaussians are used in the example, depicted in Figure 2. Each of the Gaus-
sians includes 100 data points. Various amounts of labeled data are chosen
to check the error for the different methods. Since the model selection proce-
dure is rather extensive, the experiments are performed in the transductive
setting. This does not require an extra subset to be held out from training.
Transductive classifiers also have the potential to include more unlabeled data
compared to inductive classifiers. The reported error rates on the unlabeled
cases are averaged over 1000 runs, whereas in each run a fixed number of
random data points from this data set are labeled in order to reduce any

coincidence.

Model selection for the different classifiers is done on a separate data set as

follows:

e For all methods an RBF kernel is used. The same bandwidth is used for all
three methods. This bandwidth is tuned by cross-validation on the separate
data set of 200 data points using the standard LS-SVM classifier.

e Model selection for the standard LS-SVM classifier (y = 14.5875, 0% =
2.28296) is done only once by cross-validation on the separate set (i.e. 200
cases). For each of the different amounts of labeled data, these tuning pa-

rameters are used for the standard LS-SVM classifier. This is because model
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selection is difficult for standard LS-SVMs when only a few cases are labeled.

e On the contrary, for Laplacian RLS and semi-supervised LS-SVMs the pa-
rameters (i.e. v € {107%,1077,1075,107°,...,1,2,...,30}, n € {0.01,0.2,0.4,
0.6,1,2,...,30}) are tuned on the separate data set, for every different num-
ber of labeled data. Also, in this transductive setting 1000 random selections
of labeled data are used. Each time an amount of points are randomly cho-
sen, they are assumed to be labeled. All other points are assumed to be
unlabeled. Finally, the performance is evaluated on the unlabeled points.

e The graph Laplacian matrices for the semi-supervised LS-SVM classifiers
and Laplacian RLS are equal. The adjacency matrices contain binary weights,
calculated based on the nearest neighbours. For each case the six nearest
neighbours are determined. The v;; values for these neighbours are set to 1,

all others equal 0. Next, the adjacency matrices are symmetrized.

These models are now used on the independent data set and produce the
results, depicted in the lower panel of Figure 2. One can observe that the av-
eraged error rates of semi-supervised LS-SVMs and Laplacian RLS are smaller
compared to the ones of standard LS-SVMs. When only a small amount of
data is labeled this difference is larger. Increasing the number of labeled data
points, makes the error rates converge. Another observation is that for smaller
amounts of labeled data the performance of the semi-supervised LS-SVM clas-

sifier is slightly better than the one of Laplacian RLS.

In the example in Figure 3 the dimension of the input space is increased to 100
and more overlap is introduced. The experimental setup is identical to the pre-
vious one. In Figure 3 one can observe that the difference between Laplacian
RLS and semi-supervised LS-SVMs is larger. Semi-supervised LS-SVMs show

an increased performance compared to standard LS-SVMs and Laplacian RLS.
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It is observed that standard LS-SVMs sometimes produce smaller error rates
than Laplacian RLS. However, one has to keep in mind that model selection
for standard LS-SVMs was done using all data. An explanation for the differ-
ence in performance between Laplacian RLS and semi-supervised LS-SVMs
is the introduction of more overlap. Since there is more overlap between the
Gaussians, more v;; values indicate false relations between cases. This suggests
that local smoothness is less decisive. As such, the semi-supervised LS-SVMs

might achieve an increased performance when a smaller amount of data is

labeled.

4.2 Real-life data sets

Here we further study the effect of the number of labeled data on two real-
life data sets. As in (Belkin et al., 2006), the different methods are compared
based on the USPS handwritten digits data set. Because of the extensive
model selection process the analysis is restricted to a single binary prob-
lem, separating digit 6 from digit 8 As in (Belkin et al., 2006), the first
400 images of each of the two digits from the USPS data set, are prepro-
cessed by PCA allowing 100 dimensions. The first 200 cases for each of the
two classes are used for model selection, the remaining are left for evalua-
tion. Model selection is done in a similar way as before. An RBF kernel is
used for standard LS-SVMs, semi-supervised LS-SVMs and Laplacian RLS.
Model selection for the standard LS-SVM is done once by cross-validation
(v = 193.8082, 02 = 144.5378) on the first 400 images. Again, these param-
eters are used for all different amounts of labeled data. For Laplacian RLS
and semi-supervised LS-SVMs the v € {1078,1077,107%,107%,..., 1,2, ..., 30}
and n € {0.01,0.2,0.4,0.6,1,2,...,30} are tuned on the first 400 data points
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for each amount of labeled data. Also, in each run, 1000 random selections of
labeled data are performed. Again, the Laplacian matrices for semi-supervised
LS-SVMs and Laplacian RLS are equal. The adjacency matrices contain bi-
nary weights, selected based on the six nearest neighbours. For each case the
v;; values for the six nearest neighbours are set to 1. The performance on the
independent data set, the last 400 images, is summarized in Figure 4. In the
upper panel the performance of the standard LS-SVM classifier is decreased
compared to the methods that take into account unlabeled data. When more
data become labeled, their performances converge. The difference in perfor-
mance between semi-supervised LS-SVMs and Laplacian RLS is larger for
small amounts of labeled data. Also, boxplots are provided for the smallest
amounts of labeled data in the lower panel. In this example, the spread for

semi-supervised LS-SVMs seems to be a bit smaller.

Next, the analysis is repeated on the Isolet database, containing the letters of
the English alphabet spoken in isolation. This data set contains expressions
of 150 subjects, who spoke all letters of the alphabet twice. Like in (Belkin
et al., 2006), 5 sets of 30 subjects each are constructed. In this comparison
the focus is on distinguishing between the letters a and b. For model selec-
tion the first 300 cases, coming from the first three sets, are used while for
evaluation purposes the last 300 cases, selected from the last three sets, are
used. An RBF kernel is used for all methods. The bandwidth of this kernel
is tuned by cross-validation on the first 300 cases using standard LS-SVMs.
Model selection for the standard LS-SVM classifier is also done once by cross-
validation (y = 4.0381, 02 = 607.9657) on the first 300 data points. This
standard LS-SVM model is used for all amounts of labeled data. Model selec-

tion for Laplacian RLS and semi-supervised LS-SVMs is performed for each
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number of labeled data (i.e. v € {1078,1077,107%,107%,...,1,2,...,30} and
n € {0.01,0.2,0.4,0.6,1,2,...,30}), including 1000 random selections of la-
beled data as before. Laplacian matrices for semi-supervised LS-SVMs and
Laplacian RLS are constructed based on the six nearest neighbours. Only bi-
nary weights are used in the adjacency matrices. The results of the selected
models on the independent test set (i.e. 300 cases) are depicted in Figure
5. For small numbers of labeled data, the performance of Laplacian RLS and
semi-supervised LS-SVMs is increased compared to standard LS-SVMs. These
performances converge when more labeled data become involved. Also, for
small numbers of labeled data semi-supervised LS-SVMs seem to result into

less errors with respect to Laplacian RLS.

5 Conclusion

A semi-supervised version of the LS-SVM classifier is discussed that does not
depend on the assumption that true class labels for unlabeled data equal
zero. The problem is solved by the introduction of a set of variables and
additional equality constraints into the classifier formulation. The solution is
given by a linear system that is a modification to existing semi-supervised
methods. It is illustrated that the inclusion of unlabeled information into the
LS-SVM classifier increases the performance. The proposed method achieves
a good performance on both artificial data sets and real-life problems that is
comparable with the one of Laplacian RLS. For some data sets an increase
in performance, compared to Laplacian RLS, is observed when only limited

numbers of labeled data are available.
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Captions of figures

Figure 1: The two moons benchmark classification problem. The upper left
panel contains the training data. Only one example of each class is labeled.
The use of standard LS-SVMs, upper right panel, results in a linear decision
boundary, not recognizing the structure of the two moons. By incorporating
unlabeled data, based on the semi-supervised LS-SVM model, the two moons
are clearly recognized as is depicted in the lower left panel. The performance of
the same semi-supervised LS-SVM classifier on 200 new data points is provided
in the lower right panel. These results are similar to the ones from earlier

studies (Zhou et al., 2004; Belkin et al., 2006).

Figure 2: The effect of increasing the number of labeled data for standard LS-
SVMs, semi-supervised LS-SVMs and Laplacian RLS is shown on an artificial
data set. In the upper panel two overlapping Gaussians are depicted. For var-
ious amounts of labeled data the test error rates, averaged over 1000 runs of
randomly selecting labeled points, is plotted. Semi-supervised LS-SVMs and
Laplacian RLS produce less errors than standard LS-SVMs. When including
more labeled data, the performances of all methods converge. For a smaller
amount of labeled data, the semi-supervised LS-SVMs show an increased per-

formance compared to Laplacian RLS.

Figure 3: The effect of increasing the number of labeled data for standard
LS-SVMs, semi-supervised LS-SVMs and Laplacian RLS is shown for two
overlapping Gaussians. Compared to the previous example, the input dimen-
sion is increased to 100 and there is more overlap between the Gaussians.
The test error rates, averaged over 1000 runs of randomly selecting labeled

points, is plotted for various amounts of labeled data. The differences between
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semi-supervised LS-SVMs and Laplacian RLS are larger.

Figure 4: The effect of increasing the number of labeled data for standard
LS-SVMs, semi-supervised LS-SVMs and Laplacian RLS when classifying be-
tween digit 6 and 8, selected from the USPS data set, is shown. The test set
error rate is plotted for different amounts of labeled data. In the upper panel
the results are averaged over 1000 runs of randomly selecting labeled data.
For small numbers of labeled data semi-supervised LS-SVMs and Laplacian
RLS increase the performance with respect to standard LS-SVMs. When more
labeled data are included their performances converge. The difference between
semi-supervised LS-SVMs and Laplacian RLS is larger for a small amount of
labeled data. In the lower panel boxplots are provided for the smallest amounts

of labeled data for Laplacian RLS and semi-supervised LS-SVMs.

Figure 5: The effect of increasing the number of labeled data for standard
LS-SVMs, semi-supervised LS-SVMs and Laplacian RLS when classifying be-
tween the letters a and b, chosen from the Isolet database, is shown. For
little amounts of labeled data the average test error rates, over 1000 runs of
randomly selecting labeled data, of semi-supervised LS-SVMs is smaller com-
pared to the one of Laplacian RLS. Including more labeled data makes the
error rates of standard LS-SVMs, semi-supervised LS-SVMs and Laplacian

RLS converge.
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